The generator matrix

 1  0  1  1  1  0  1 X^2+X  1  1 X^2+X  1  1 X^2  1  1  1 X^2  X  1  X  1  1  1  X  1  X  1  1  0  1  1  X  1  1  1  1  1  1 X^2  X  1  1 X^2  0  1 X^2+X  1  1  1 X^2+X  1  1  1  1  0  1  X X^2+X  1  1  X  X  1
 0  1  1  0 X^2+X+1  1  X  1 X^2+X+1  X  1  1 X^2  1 X+1  0 X^2+X+1  1  1 X^2+X  1 X^2+1  X X^2+X+1  1  1  1  1 X+1  1 X^2 X^2+X+1  1 X^2+X X^2+X+1  X X+1  0  1  1  1  0 X^2+X  1  1  1  1  X X^2 X^2+X+1  1  0  1 X^2+1  X  0 X^2+X  1  1 X^2+X+1 X+1  1 X^2+X  0
 0  0  X  0 X^2+X  X  0  X  0  X X^2  0  X  0 X^2 X^2+X  X  X X^2+X X^2  0 X^2+X  X X^2  0 X^2 X^2+X  X  0 X^2 X^2 X^2  X  0 X^2+X X^2+X X^2 X^2+X X^2+X X^2+X X^2+X X^2 X^2+X X^2 X^2+X  0 X^2 X^2 X^2  X X^2  X X^2 X^2+X X^2  X X^2  0  0 X^2+X X^2+X X^2  X  0
 0  0  0  X  0  X  X  X X^2+X  0 X^2 X^2+X X^2  X X^2  X X^2+X X^2 X^2  0 X^2+X X^2+X X^2+X X^2+X X^2 X^2  0  X  0 X^2+X  X X^2+X X^2 X^2  X X^2  X  0 X^2  0 X^2+X X^2  X X^2 X^2+X  0  X X^2+X X^2+X X^2  0 X^2+X  X  X X^2 X^2  0 X^2  X X^2  0  X X^2 X^2
 0  0  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2 X^2  0 X^2 X^2 X^2

generates a code of length 64 over Z2[X]/(X^3) who�s minimum homogenous weight is 58.

Homogenous weight enumerator: w(x)=1x^0+84x^58+124x^59+168x^60+230x^61+186x^62+208x^63+192x^64+164x^65+171x^66+158x^67+127x^68+92x^69+62x^70+28x^71+11x^72+4x^73+5x^74+10x^75+8x^76+6x^77+2x^78+2x^80+2x^82+3x^84

The gray image is a linear code over GF(2) with n=256, k=11 and d=116.
This code was found by Heurico 1.16 in 0.346 seconds.